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CMIP5 GCM Precip. Simulations
Multi-year storage reservoirs must be managed in the face of 
weather and climate variability across time scales ranging from daily 
weather to interannual climate. While seasonal climate may contain 
a predictable component associated with the El Nino-Southern 
Oscillation (ENSO), longer time scales are not yet usefully 
predictable, nor is the interannual-to-interdecadal power spectrum 
well estimated from observed data. In addition, climate simulations 
from general circulation models (GCMs) are often lacking in their 
ability to generate realistic hydroclimate variability across time 
scales, especially at small spatial scales. These issues are critical 
for climate change adaptation planning in water management, where 
realistic estimates of climate and stream flow variability are required."
"
For the Bhakra reservoir in northern India, we develop estimates of 
climate and stream flow variability, including the interannual-to-
interdecadal power spectrum, based on (1) instrumental stream flow 
records of the Sutlej river, 1963–2010; (2) tree ring reconstructions 
of the Sutlej flow back to 1321; and (3) multi-century control 
simulations of precipitation-minus-evaporation made with several 
coupled ocean-atmosphere GCMs archived in the IPCC CMIP5 
database. By comparing these observed, paleo-proxy, and GCM-
based estimates, we shed light on the ability of GCMs to simulate 
realistic hydroclimate variability over the Indus basin, as well as on 
the nature of tree-ring based streamflow reconstructions. In addition 
to these estimates of the variability spectrum, we explore the use of 
a nonlinear, multi-level stochastic polynomial inverse model to bridge 
between these different datasets."

Abstract

Sutlej River Flows 1963–2010

Conclusions

Precipitation Variability

• Sutlej river is fed by both winter precip., snowmelt and the summer 
monsoon "

• Sutlej river integrates signal of ENSO transitions  
(EN➔LN gives high flows), amplifying ENSO impact"

• Historical flow record shows ENSO peaks though not significant"

• Most CMIP5 GCMs do not capture the precip. seasonality. Of the 8 
of 31 that do, only two GCMs reproduce the spectrum of ENSO + 
decadal climate influences"

• The GFDL-ESM2G and MIROC5 exhibit different flavors of decadal 
SST teleconnection "

• A dual-timescale reservoir optimization model was developed to use 
seasonal and longer-lead forecast information, maximizing the 
expected value of releases, conditioned on the forecasts "

• A “PARX” periodic autoregressive flow-prediction model with 
exogenous inputs provides a framework for incorporating climate 
predictors"

• Contracts initiated in March yield the highest annual net revenue "
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Reservoir Management ModelSutlej River vs ENSO Transitions

• Peaks near 4 
and 2 years; 
statistical 
significance not 
very high"
"
• Variability 
dominated by 
interannual time 
scales
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Sutlej MJJAS anomaly
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• El Niño SST 
pattern in the 
preceding winter "
"
"
• weak La Niña 
in summer "

Correlations of May–Sep flow vs Sea Surface Temp. 

[65E–75E, 30N–40N]"
"
"
"
• Winter precip. from 
“western 
disturbances” + 
Summer monsoon

• Power spectr of 
seasonal-average 
precip. + 25% conf. 
limits"
"
• ENSO and low-freq. 
peaks, marginally 
significant

SSA Power Spectrum (cy/yr)

SSA Spectra of Long Control Runs (Dec–Mar)

Seasonal cycle Precip. EOFs for Upper-Indus Region

• Of all the 31 CMIP5 models with multi-century pre-
industrial control runs, only two emerge with (a) realistic 
regional precip. seasonal cycles, and (b) for ENSO and 
low-freq. spectral peaks"
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• ENSO patterns, with 
excessive westward 
extension in 
equatorial W. Pacific 

• Strong Indian Ocean 
loadings

• Large May–
Sep flows tend 
to be associated 
with El Niño-to-
La Niña 
transitions

Spectrum - blue, error bars - red
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Fig. 4. Seasonal-cycle EOFs, first round selection. First EOF shown in blue, second in green.
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Seasonal cycle Precip. EOFs for Upper-Indus Region

• PDO-like Low freq. patterns 

• GCMs show ocean-gyre 
patterns 

• MIROC5 North Atlantic signal

Multi-timescale climate 
informed streamflow 

forecasts: PARX  

Flood Volume Forecasts 
given streamflow 
forecasts: Copula 

Allocate Flood Storages 
by Period: AS = TS – FV 

McISH for 
Hydropower and 

Irrigation 

* AS: Active Storage 
   TS: Total Storage 
   FV: Flood Volume 

* PARX: periodic 
autoregressive with 
exogenous variables 
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(a) Annual  Net  Revenue  (“Nested”  :  Annual  PAR  +  Seasonal  PARX)
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(b) Annual  Net  Revenue  (“PAR”  :  Annual  PAR  +  No  Seasonal)
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Figure 25.5: (a) Annual Net Revenue from irrigation and hydropower supplies with contracts 

optimized by McISH using Nested bi-timescales (seasonal PARX model and annual PAR model) 

forecasts, applied on real inflow to the Bhakra Dam from 1963 to 2004; (b) Annual Net Revenue 

with contracts optimized by McISH using single time scale (annual PAR model) forecast, applied on 

real flow; (c) Annual Net Revenue with contracts optimized by McISH using nested “perfect” 

seasonal forecast and annual forecast, applied on real flow.

(c) Annual  Net  Revenue  (“Perfect”  :  Annual  PAR  +  Perfect  Seasonal)

Optimized Contracts’ Performance vs Start Month 

Annual Net Revenue from irrigation and hydropower 
supplies with contracts optimized by McISH using 
Nested bi-timescales (seasonal PARX model and 
annual PAR model) forecasts, applied on real inflow 
to the Bhakra Dam from 1963 to 2004; (b) Annual 
Net Revenue with contracts optimized by McISH 
using single time scale (annual PAR model) 
forecast, applied on real flow; (c) Annual Net 
Revenue with contracts optimized by McISH using 
nested “perfect” seasonal forecast and annual 
forecast, applied on real flow."


